Рассчитать высоту треугольника со сторонами 124, 102 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 102 + 42}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-124)(134-102)(134-42)}}{102}\normalsize = 38.9449478}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-124)(134-102)(134-42)}}{124}\normalsize = 32.0353603}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-124)(134-102)(134-42)}}{42}\normalsize = 94.5805875}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 102 и 42 равна 38.9449478
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 102 и 42 равна 32.0353603
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 102 и 42 равна 94.5805875
Ссылка на результат
?n1=124&n2=102&n3=42
Найти высоту треугольника со сторонами 103, 53 и 52
Найти высоту треугольника со сторонами 143, 132 и 14
Найти высоту треугольника со сторонами 150, 111 и 89
Найти высоту треугольника со сторонами 125, 120 и 113
Найти высоту треугольника со сторонами 99, 90 и 27
Найти высоту треугольника со сторонами 129, 115 и 107
Найти высоту треугольника со сторонами 143, 132 и 14
Найти высоту треугольника со сторонами 150, 111 и 89
Найти высоту треугольника со сторонами 125, 120 и 113
Найти высоту треугольника со сторонами 99, 90 и 27
Найти высоту треугольника со сторонами 129, 115 и 107