Рассчитать высоту треугольника со сторонами 124, 104 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 104 + 37}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-124)(132.5-104)(132.5-37)}}{104}\normalsize = 33.6696168}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-124)(132.5-104)(132.5-37)}}{124}\normalsize = 28.2390335}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-124)(132.5-104)(132.5-37)}}{37}\normalsize = 94.638923}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 104 и 37 равна 33.6696168
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 104 и 37 равна 28.2390335
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 104 и 37 равна 94.638923
Ссылка на результат
?n1=124&n2=104&n3=37
Найти высоту треугольника со сторонами 70, 62 и 17
Найти высоту треугольника со сторонами 131, 82 и 74
Найти высоту треугольника со сторонами 143, 103 и 48
Найти высоту треугольника со сторонами 142, 124 и 124
Найти высоту треугольника со сторонами 131, 112 и 40
Найти высоту треугольника со сторонами 141, 115 и 113
Найти высоту треугольника со сторонами 131, 82 и 74
Найти высоту треугольника со сторонами 143, 103 и 48
Найти высоту треугольника со сторонами 142, 124 и 124
Найти высоту треугольника со сторонами 131, 112 и 40
Найти высоту треугольника со сторонами 141, 115 и 113