Рассчитать высоту треугольника со сторонами 124, 112 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 112 + 29}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-124)(132.5-112)(132.5-29)}}{112}\normalsize = 27.6042836}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-124)(132.5-112)(132.5-29)}}{124}\normalsize = 24.9329013}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-124)(132.5-112)(132.5-29)}}{29}\normalsize = 106.609647}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 112 и 29 равна 27.6042836
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 112 и 29 равна 24.9329013
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 112 и 29 равна 106.609647
Ссылка на результат
?n1=124&n2=112&n3=29
Найти высоту треугольника со сторонами 149, 120 и 58
Найти высоту треугольника со сторонами 138, 121 и 53
Найти высоту треугольника со сторонами 96, 88 и 78
Найти высоту треугольника со сторонами 110, 88 и 26
Найти высоту треугольника со сторонами 146, 120 и 50
Найти высоту треугольника со сторонами 146, 114 и 85
Найти высоту треугольника со сторонами 138, 121 и 53
Найти высоту треугольника со сторонами 96, 88 и 78
Найти высоту треугольника со сторонами 110, 88 и 26
Найти высоту треугольника со сторонами 146, 120 и 50
Найти высоту треугольника со сторонами 146, 114 и 85