Рассчитать высоту треугольника со сторонами 124, 116 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 116 + 14}{2}} \normalsize = 127}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127(127-124)(127-116)(127-14)}}{116}\normalsize = 11.8650633}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127(127-124)(127-116)(127-14)}}{124}\normalsize = 11.0995753}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127(127-124)(127-116)(127-14)}}{14}\normalsize = 98.3105243}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 116 и 14 равна 11.8650633
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 116 и 14 равна 11.0995753
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 116 и 14 равна 98.3105243
Ссылка на результат
?n1=124&n2=116&n3=14
Найти высоту треугольника со сторонами 81, 74 и 50
Найти высоту треугольника со сторонами 142, 134 и 92
Найти высоту треугольника со сторонами 73, 65 и 17
Найти высоту треугольника со сторонами 134, 115 и 71
Найти высоту треугольника со сторонами 141, 127 и 77
Найти высоту треугольника со сторонами 127, 100 и 75
Найти высоту треугольника со сторонами 142, 134 и 92
Найти высоту треугольника со сторонами 73, 65 и 17
Найти высоту треугольника со сторонами 134, 115 и 71
Найти высоту треугольника со сторонами 141, 127 и 77
Найти высоту треугольника со сторонами 127, 100 и 75