Рассчитать высоту треугольника со сторонами 124, 116 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 116 + 58}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-124)(149-116)(149-58)}}{116}\normalsize = 57.6650683}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-124)(149-116)(149-58)}}{124}\normalsize = 53.9447414}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-124)(149-116)(149-58)}}{58}\normalsize = 115.330137}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 116 и 58 равна 57.6650683
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 116 и 58 равна 53.9447414
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 116 и 58 равна 115.330137
Ссылка на результат
?n1=124&n2=116&n3=58
Найти высоту треугольника со сторонами 118, 118 и 43
Найти высоту треугольника со сторонами 89, 61 и 44
Найти высоту треугольника со сторонами 101, 101 и 56
Найти высоту треугольника со сторонами 93, 90 и 54
Найти высоту треугольника со сторонами 92, 75 и 62
Найти высоту треугольника со сторонами 105, 70 и 57
Найти высоту треугольника со сторонами 89, 61 и 44
Найти высоту треугольника со сторонами 101, 101 и 56
Найти высоту треугольника со сторонами 93, 90 и 54
Найти высоту треугольника со сторонами 92, 75 и 62
Найти высоту треугольника со сторонами 105, 70 и 57