Рассчитать высоту треугольника со сторонами 124, 118 и 105
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 118 + 105}{2}} \normalsize = 173.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173.5(173.5-124)(173.5-118)(173.5-105)}}{118}\normalsize = 96.8483229}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173.5(173.5-124)(173.5-118)(173.5-105)}}{124}\normalsize = 92.1621138}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173.5(173.5-124)(173.5-118)(173.5-105)}}{105}\normalsize = 108.839068}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 118 и 105 равна 96.8483229
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 118 и 105 равна 92.1621138
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 118 и 105 равна 108.839068
Ссылка на результат
?n1=124&n2=118&n3=105
Найти высоту треугольника со сторонами 97, 94 и 35
Найти высоту треугольника со сторонами 123, 67 и 65
Найти высоту треугольника со сторонами 139, 124 и 71
Найти высоту треугольника со сторонами 132, 128 и 90
Найти высоту треугольника со сторонами 111, 83 и 80
Найти высоту треугольника со сторонами 120, 116 и 48
Найти высоту треугольника со сторонами 123, 67 и 65
Найти высоту треугольника со сторонами 139, 124 и 71
Найти высоту треугольника со сторонами 132, 128 и 90
Найти высоту треугольника со сторонами 111, 83 и 80
Найти высоту треугольника со сторонами 120, 116 и 48