Рассчитать высоту треугольника со сторонами 124, 120 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 120 + 62}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-124)(153-120)(153-62)}}{120}\normalsize = 60.8374679}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-124)(153-120)(153-62)}}{124}\normalsize = 58.8749689}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-124)(153-120)(153-62)}}{62}\normalsize = 117.749938}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 120 и 62 равна 60.8374679
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 120 и 62 равна 58.8749689
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 120 и 62 равна 117.749938
Ссылка на результат
?n1=124&n2=120&n3=62
Найти высоту треугольника со сторонами 115, 102 и 89
Найти высоту треугольника со сторонами 139, 137 и 110
Найти высоту треугольника со сторонами 75, 72 и 55
Найти высоту треугольника со сторонами 126, 102 и 45
Найти высоту треугольника со сторонами 142, 83 и 72
Найти высоту треугольника со сторонами 107, 79 и 60
Найти высоту треугольника со сторонами 139, 137 и 110
Найти высоту треугольника со сторонами 75, 72 и 55
Найти высоту треугольника со сторонами 126, 102 и 45
Найти высоту треугольника со сторонами 142, 83 и 72
Найти высоту треугольника со сторонами 107, 79 и 60