Рассчитать высоту треугольника со сторонами 124, 122 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 122 + 35}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-124)(140.5-122)(140.5-35)}}{122}\normalsize = 34.8708387}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-124)(140.5-122)(140.5-35)}}{124}\normalsize = 34.3084058}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-124)(140.5-122)(140.5-35)}}{35}\normalsize = 121.549781}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 122 и 35 равна 34.8708387
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 122 и 35 равна 34.3084058
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 122 и 35 равна 121.549781
Ссылка на результат
?n1=124&n2=122&n3=35
Найти высоту треугольника со сторонами 124, 88 и 58
Найти высоту треугольника со сторонами 125, 124 и 55
Найти высоту треугольника со сторонами 132, 132 и 35
Найти высоту треугольника со сторонами 79, 69 и 61
Найти высоту треугольника со сторонами 138, 132 и 62
Найти высоту треугольника со сторонами 145, 145 и 126
Найти высоту треугольника со сторонами 125, 124 и 55
Найти высоту треугольника со сторонами 132, 132 и 35
Найти высоту треугольника со сторонами 79, 69 и 61
Найти высоту треугольника со сторонами 138, 132 и 62
Найти высоту треугольника со сторонами 145, 145 и 126