Рассчитать высоту треугольника со сторонами 124, 123 и 109
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 123 + 109}{2}} \normalsize = 178}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{178(178-124)(178-123)(178-109)}}{123}\normalsize = 98.205917}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{178(178-124)(178-123)(178-109)}}{124}\normalsize = 97.4139338}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{178(178-124)(178-123)(178-109)}}{109}\normalsize = 110.819521}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 123 и 109 равна 98.205917
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 123 и 109 равна 97.4139338
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 123 и 109 равна 110.819521
Ссылка на результат
?n1=124&n2=123&n3=109
Найти высоту треугольника со сторонами 141, 120 и 46
Найти высоту треугольника со сторонами 82, 74 и 11
Найти высоту треугольника со сторонами 117, 114 и 107
Найти высоту треугольника со сторонами 138, 125 и 119
Найти высоту треугольника со сторонами 142, 141 и 102
Найти высоту треугольника со сторонами 102, 90 и 45
Найти высоту треугольника со сторонами 82, 74 и 11
Найти высоту треугольника со сторонами 117, 114 и 107
Найти высоту треугольника со сторонами 138, 125 и 119
Найти высоту треугольника со сторонами 142, 141 и 102
Найти высоту треугольника со сторонами 102, 90 и 45