Рассчитать высоту треугольника со сторонами 124, 123 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 123 + 15}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-124)(131-123)(131-15)}}{123}\normalsize = 14.9997334}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-124)(131-123)(131-15)}}{124}\normalsize = 14.8787678}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-124)(131-123)(131-15)}}{15}\normalsize = 122.997814}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 123 и 15 равна 14.9997334
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 123 и 15 равна 14.8787678
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 123 и 15 равна 122.997814
Ссылка на результат
?n1=124&n2=123&n3=15
Найти высоту треугольника со сторонами 130, 117 и 101
Найти высоту треугольника со сторонами 140, 96 и 71
Найти высоту треугольника со сторонами 39, 38 и 3
Найти высоту треугольника со сторонами 143, 142 и 53
Найти высоту треугольника со сторонами 106, 93 и 34
Найти высоту треугольника со сторонами 112, 112 и 96
Найти высоту треугольника со сторонами 140, 96 и 71
Найти высоту треугольника со сторонами 39, 38 и 3
Найти высоту треугольника со сторонами 143, 142 и 53
Найти высоту треугольника со сторонами 106, 93 и 34
Найти высоту треугольника со сторонами 112, 112 и 96