Рассчитать высоту треугольника со сторонами 124, 72 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 72 + 62}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-124)(129-72)(129-62)}}{72}\normalsize = 43.5965563}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-124)(129-72)(129-62)}}{124}\normalsize = 25.3141295}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-124)(129-72)(129-62)}}{62}\normalsize = 50.6282589}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 72 и 62 равна 43.5965563
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 72 и 62 равна 25.3141295
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 72 и 62 равна 50.6282589
Ссылка на результат
?n1=124&n2=72&n3=62
Найти высоту треугольника со сторонами 119, 95 и 48
Найти высоту треугольника со сторонами 127, 111 и 45
Найти высоту треугольника со сторонами 113, 111 и 11
Найти высоту треугольника со сторонами 130, 92 и 92
Найти высоту треугольника со сторонами 123, 94 и 51
Найти высоту треугольника со сторонами 95, 81 и 45
Найти высоту треугольника со сторонами 127, 111 и 45
Найти высоту треугольника со сторонами 113, 111 и 11
Найти высоту треугольника со сторонами 130, 92 и 92
Найти высоту треугольника со сторонами 123, 94 и 51
Найти высоту треугольника со сторонами 95, 81 и 45