Рассчитать высоту треугольника со сторонами 124, 73 и 52

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 73 + 52}{2}} \normalsize = 124.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124.5(124.5-124)(124.5-73)(124.5-52)}}{73}\normalsize = 13.2083762}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124.5(124.5-124)(124.5-73)(124.5-52)}}{124}\normalsize = 7.77589891}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124.5(124.5-124)(124.5-73)(124.5-52)}}{52}\normalsize = 18.5425282}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 73 и 52 равна 13.2083762
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 73 и 52 равна 7.77589891
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 73 и 52 равна 18.5425282
Ссылка на результат
?n1=124&n2=73&n3=52