Рассчитать высоту треугольника со сторонами 124, 75 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 75 + 66}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-124)(132.5-75)(132.5-66)}}{75}\normalsize = 55.3389455}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-124)(132.5-75)(132.5-66)}}{124}\normalsize = 33.4711364}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-124)(132.5-75)(132.5-66)}}{66}\normalsize = 62.8851653}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 75 и 66 равна 55.3389455
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 75 и 66 равна 33.4711364
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 75 и 66 равна 62.8851653
Ссылка на результат
?n1=124&n2=75&n3=66
Найти высоту треугольника со сторонами 74, 66 и 49
Найти высоту треугольника со сторонами 145, 140 и 58
Найти высоту треугольника со сторонами 123, 123 и 57
Найти высоту треугольника со сторонами 127, 92 и 88
Найти высоту треугольника со сторонами 116, 110 и 40
Найти высоту треугольника со сторонами 142, 127 и 125
Найти высоту треугольника со сторонами 145, 140 и 58
Найти высоту треугольника со сторонами 123, 123 и 57
Найти высоту треугольника со сторонами 127, 92 и 88
Найти высоту треугольника со сторонами 116, 110 и 40
Найти высоту треугольника со сторонами 142, 127 и 125