Рассчитать высоту треугольника со сторонами 124, 76 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 76 + 62}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-124)(131-76)(131-62)}}{76}\normalsize = 49.0915745}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-124)(131-76)(131-62)}}{124}\normalsize = 30.0883844}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-124)(131-76)(131-62)}}{62}\normalsize = 60.1767687}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 76 и 62 равна 49.0915745
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 76 и 62 равна 30.0883844
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 76 и 62 равна 60.1767687
Ссылка на результат
?n1=124&n2=76&n3=62
Найти высоту треугольника со сторонами 104, 82 и 25
Найти высоту треугольника со сторонами 85, 84 и 13
Найти высоту треугольника со сторонами 84, 68 и 40
Найти высоту треугольника со сторонами 134, 120 и 70
Найти высоту треугольника со сторонами 94, 85 и 53
Найти высоту треугольника со сторонами 136, 112 и 90
Найти высоту треугольника со сторонами 85, 84 и 13
Найти высоту треугольника со сторонами 84, 68 и 40
Найти высоту треугольника со сторонами 134, 120 и 70
Найти высоту треугольника со сторонами 94, 85 и 53
Найти высоту треугольника со сторонами 136, 112 и 90