Рассчитать высоту треугольника со сторонами 124, 78 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 78 + 50}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-124)(126-78)(126-50)}}{78}\normalsize = 24.5845961}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-124)(126-78)(126-50)}}{124}\normalsize = 15.464504}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-124)(126-78)(126-50)}}{50}\normalsize = 38.35197}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 78 и 50 равна 24.5845961
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 78 и 50 равна 15.464504
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 78 и 50 равна 38.35197
Ссылка на результат
?n1=124&n2=78&n3=50
Найти высоту треугольника со сторонами 120, 111 и 73
Найти высоту треугольника со сторонами 80, 63 и 59
Найти высоту треугольника со сторонами 107, 93 и 57
Найти высоту треугольника со сторонами 77, 55 и 44
Найти высоту треугольника со сторонами 137, 137 и 2
Найти высоту треугольника со сторонами 136, 112 и 62
Найти высоту треугольника со сторонами 80, 63 и 59
Найти высоту треугольника со сторонами 107, 93 и 57
Найти высоту треугольника со сторонами 77, 55 и 44
Найти высоту треугольника со сторонами 137, 137 и 2
Найти высоту треугольника со сторонами 136, 112 и 62