Рассчитать высоту треугольника со сторонами 124, 87 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 87 + 80}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-124)(145.5-87)(145.5-80)}}{87}\normalsize = 79.5902837}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-124)(145.5-87)(145.5-80)}}{124}\normalsize = 55.84157}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-124)(145.5-87)(145.5-80)}}{80}\normalsize = 86.5544335}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 87 и 80 равна 79.5902837
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 87 и 80 равна 55.84157
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 87 и 80 равна 86.5544335
Ссылка на результат
?n1=124&n2=87&n3=80
Найти высоту треугольника со сторонами 150, 136 и 56
Найти высоту треугольника со сторонами 148, 113 и 79
Найти высоту треугольника со сторонами 135, 128 и 96
Найти высоту треугольника со сторонами 109, 86 и 74
Найти высоту треугольника со сторонами 106, 106 и 52
Найти высоту треугольника со сторонами 126, 112 и 58
Найти высоту треугольника со сторонами 148, 113 и 79
Найти высоту треугольника со сторонами 135, 128 и 96
Найти высоту треугольника со сторонами 109, 86 и 74
Найти высоту треугольника со сторонами 106, 106 и 52
Найти высоту треугольника со сторонами 126, 112 и 58