Рассчитать высоту треугольника со сторонами 124, 88 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 88 + 80}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-124)(146-88)(146-80)}}{88}\normalsize = 79.6931616}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-124)(146-88)(146-80)}}{124}\normalsize = 56.5564372}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-124)(146-88)(146-80)}}{80}\normalsize = 87.6624777}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 88 и 80 равна 79.6931616
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 88 и 80 равна 56.5564372
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 88 и 80 равна 87.6624777
Ссылка на результат
?n1=124&n2=88&n3=80
Найти высоту треугольника со сторонами 136, 114 и 93
Найти высоту треугольника со сторонами 130, 103 и 98
Найти высоту треугольника со сторонами 111, 84 и 84
Найти высоту треугольника со сторонами 90, 79 и 32
Найти высоту треугольника со сторонами 119, 96 и 81
Найти высоту треугольника со сторонами 76, 51 и 35
Найти высоту треугольника со сторонами 130, 103 и 98
Найти высоту треугольника со сторонами 111, 84 и 84
Найти высоту треугольника со сторонами 90, 79 и 32
Найти высоту треугольника со сторонами 119, 96 и 81
Найти высоту треугольника со сторонами 76, 51 и 35