Рассчитать высоту треугольника со сторонами 124, 90 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 90 + 58}{2}} \normalsize = 136}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136(136-124)(136-90)(136-58)}}{90}\normalsize = 53.774178}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136(136-124)(136-90)(136-58)}}{124}\normalsize = 39.0296453}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136(136-124)(136-90)(136-58)}}{58}\normalsize = 83.44269}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 90 и 58 равна 53.774178
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 90 и 58 равна 39.0296453
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 90 и 58 равна 83.44269
Ссылка на результат
?n1=124&n2=90&n3=58
Найти высоту треугольника со сторонами 74, 57 и 19
Найти высоту треугольника со сторонами 133, 94 и 46
Найти высоту треугольника со сторонами 103, 90 и 55
Найти высоту треугольника со сторонами 101, 78 и 37
Найти высоту треугольника со сторонами 102, 87 и 83
Найти высоту треугольника со сторонами 135, 114 и 54
Найти высоту треугольника со сторонами 133, 94 и 46
Найти высоту треугольника со сторонами 103, 90 и 55
Найти высоту треугольника со сторонами 101, 78 и 37
Найти высоту треугольника со сторонами 102, 87 и 83
Найти высоту треугольника со сторонами 135, 114 и 54