Рассчитать высоту треугольника со сторонами 124, 93 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 93 + 59}{2}} \normalsize = 138}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138(138-124)(138-93)(138-59)}}{93}\normalsize = 56.3599255}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138(138-124)(138-93)(138-59)}}{124}\normalsize = 42.2699442}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138(138-124)(138-93)(138-59)}}{59}\normalsize = 88.8385267}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 93 и 59 равна 56.3599255
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 93 и 59 равна 42.2699442
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 93 и 59 равна 88.8385267
Ссылка на результат
?n1=124&n2=93&n3=59
Найти высоту треугольника со сторонами 54, 47 и 17
Найти высоту треугольника со сторонами 133, 104 и 32
Найти высоту треугольника со сторонами 105, 102 и 9
Найти высоту треугольника со сторонами 69, 53 и 33
Найти высоту треугольника со сторонами 120, 93 и 90
Найти высоту треугольника со сторонами 130, 94 и 48
Найти высоту треугольника со сторонами 133, 104 и 32
Найти высоту треугольника со сторонами 105, 102 и 9
Найти высоту треугольника со сторонами 69, 53 и 33
Найти высоту треугольника со сторонами 120, 93 и 90
Найти высоту треугольника со сторонами 130, 94 и 48