Рассчитать высоту треугольника со сторонами 124, 94 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 94 + 34}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-124)(126-94)(126-34)}}{94}\normalsize = 18.3261533}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-124)(126-94)(126-34)}}{124}\normalsize = 13.8924065}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-124)(126-94)(126-34)}}{34}\normalsize = 50.6664238}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 94 и 34 равна 18.3261533
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 94 и 34 равна 13.8924065
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 94 и 34 равна 50.6664238
Ссылка на результат
?n1=124&n2=94&n3=34
Найти высоту треугольника со сторонами 96, 71 и 35
Найти высоту треугольника со сторонами 52, 46 и 45
Найти высоту треугольника со сторонами 71, 70 и 49
Найти высоту треугольника со сторонами 94, 78 и 62
Найти высоту треугольника со сторонами 145, 136 и 57
Найти высоту треугольника со сторонами 143, 140 и 40
Найти высоту треугольника со сторонами 52, 46 и 45
Найти высоту треугольника со сторонами 71, 70 и 49
Найти высоту треугольника со сторонами 94, 78 и 62
Найти высоту треугольника со сторонами 145, 136 и 57
Найти высоту треугольника со сторонами 143, 140 и 40