Рассчитать высоту треугольника со сторонами 124, 94 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 94 + 80}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-124)(149-94)(149-80)}}{94}\normalsize = 79.996534}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-124)(149-94)(149-80)}}{124}\normalsize = 60.6425338}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-124)(149-94)(149-80)}}{80}\normalsize = 93.9959274}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 94 и 80 равна 79.996534
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 94 и 80 равна 60.6425338
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 94 и 80 равна 93.9959274
Ссылка на результат
?n1=124&n2=94&n3=80
Найти высоту треугольника со сторонами 122, 88 и 79
Найти высоту треугольника со сторонами 55, 50 и 26
Найти высоту треугольника со сторонами 146, 145 и 65
Найти высоту треугольника со сторонами 142, 132 и 115
Найти высоту треугольника со сторонами 97, 97 и 60
Найти высоту треугольника со сторонами 125, 92 и 57
Найти высоту треугольника со сторонами 55, 50 и 26
Найти высоту треугольника со сторонами 146, 145 и 65
Найти высоту треугольника со сторонами 142, 132 и 115
Найти высоту треугольника со сторонами 97, 97 и 60
Найти высоту треугольника со сторонами 125, 92 и 57