Рассчитать высоту треугольника со сторонами 124, 94 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 94 + 84}{2}} \normalsize = 151}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151(151-124)(151-94)(151-84)}}{94}\normalsize = 83.9551471}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151(151-124)(151-94)(151-84)}}{124}\normalsize = 63.643418}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151(151-124)(151-94)(151-84)}}{84}\normalsize = 93.9498075}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 94 и 84 равна 83.9551471
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 94 и 84 равна 63.643418
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 94 и 84 равна 93.9498075
Ссылка на результат
?n1=124&n2=94&n3=84
Найти высоту треугольника со сторонами 97, 94 и 38
Найти высоту треугольника со сторонами 102, 93 и 90
Найти высоту треугольника со сторонами 141, 125 и 96
Найти высоту треугольника со сторонами 89, 71 и 43
Найти высоту треугольника со сторонами 129, 103 и 42
Найти высоту треугольника со сторонами 147, 115 и 108
Найти высоту треугольника со сторонами 102, 93 и 90
Найти высоту треугольника со сторонами 141, 125 и 96
Найти высоту треугольника со сторонами 89, 71 и 43
Найти высоту треугольника со сторонами 129, 103 и 42
Найти высоту треугольника со сторонами 147, 115 и 108