Рассчитать высоту треугольника со сторонами 124, 95 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 95 + 59}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-124)(139-95)(139-59)}}{95}\normalsize = 57.0335956}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-124)(139-95)(139-59)}}{124}\normalsize = 43.6950934}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-124)(139-95)(139-59)}}{59}\normalsize = 91.8337556}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 95 и 59 равна 57.0335956
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 95 и 59 равна 43.6950934
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 95 и 59 равна 91.8337556
Ссылка на результат
?n1=124&n2=95&n3=59
Найти высоту треугольника со сторонами 125, 102 и 78
Найти высоту треугольника со сторонами 150, 136 и 132
Найти высоту треугольника со сторонами 119, 119 и 24
Найти высоту треугольника со сторонами 139, 130 и 88
Найти высоту треугольника со сторонами 30, 30 и 15
Найти высоту треугольника со сторонами 142, 141 и 37
Найти высоту треугольника со сторонами 150, 136 и 132
Найти высоту треугольника со сторонами 119, 119 и 24
Найти высоту треугольника со сторонами 139, 130 и 88
Найти высоту треугольника со сторонами 30, 30 и 15
Найти высоту треугольника со сторонами 142, 141 и 37