Рассчитать высоту треугольника со сторонами 124, 95 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 95 + 75}{2}} \normalsize = 147}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147(147-124)(147-95)(147-75)}}{95}\normalsize = 74.9026005}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147(147-124)(147-95)(147-75)}}{124}\normalsize = 57.3850568}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147(147-124)(147-95)(147-75)}}{75}\normalsize = 94.8766273}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 95 и 75 равна 74.9026005
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 95 и 75 равна 57.3850568
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 95 и 75 равна 94.8766273
Ссылка на результат
?n1=124&n2=95&n3=75
Найти высоту треугольника со сторонами 61, 48 и 29
Найти высоту треугольника со сторонами 144, 120 и 56
Найти высоту треугольника со сторонами 90, 75 и 38
Найти высоту треугольника со сторонами 144, 85 и 63
Найти высоту треугольника со сторонами 141, 91 и 66
Найти высоту треугольника со сторонами 100, 94 и 64
Найти высоту треугольника со сторонами 144, 120 и 56
Найти высоту треугольника со сторонами 90, 75 и 38
Найти высоту треугольника со сторонами 144, 85 и 63
Найти высоту треугольника со сторонами 141, 91 и 66
Найти высоту треугольника со сторонами 100, 94 и 64