Рассчитать высоту треугольника со сторонами 124, 98 и 68

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{124 + 98 + 68}{2}} \normalsize = 145}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145(145-124)(145-98)(145-68)}}{98}\normalsize = 67.7472795}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145(145-124)(145-98)(145-68)}}{124}\normalsize = 53.5422048}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145(145-124)(145-98)(145-68)}}{68}\normalsize = 97.6357851}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 124, 98 и 68 равна 67.7472795
Высота треугольника опущенная с вершины A на сторону BC со сторонами 124, 98 и 68 равна 53.5422048
Высота треугольника опущенная с вершины C на сторону AB со сторонами 124, 98 и 68 равна 97.6357851
Ссылка на результат
?n1=124&n2=98&n3=68