Рассчитать высоту треугольника со сторонами 125, 100 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 100 + 80}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-125)(152.5-100)(152.5-80)}}{100}\normalsize = 79.9060972}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-125)(152.5-100)(152.5-80)}}{125}\normalsize = 63.9248778}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-125)(152.5-100)(152.5-80)}}{80}\normalsize = 99.8826215}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 100 и 80 равна 79.9060972
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 100 и 80 равна 63.9248778
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 100 и 80 равна 99.8826215
Ссылка на результат
?n1=125&n2=100&n3=80
Найти высоту треугольника со сторонами 142, 116 и 97
Найти высоту треугольника со сторонами 107, 74 и 46
Найти высоту треугольника со сторонами 147, 144 и 131
Найти высоту треугольника со сторонами 126, 111 и 28
Найти высоту треугольника со сторонами 92, 81 и 73
Найти высоту треугольника со сторонами 75, 75 и 23
Найти высоту треугольника со сторонами 107, 74 и 46
Найти высоту треугольника со сторонами 147, 144 и 131
Найти высоту треугольника со сторонами 126, 111 и 28
Найти высоту треугольника со сторонами 92, 81 и 73
Найти высоту треугольника со сторонами 75, 75 и 23