Рассчитать высоту треугольника со сторонами 125, 101 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 101 + 37}{2}} \normalsize = 131.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131.5(131.5-125)(131.5-101)(131.5-37)}}{101}\normalsize = 31.0809297}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131.5(131.5-125)(131.5-101)(131.5-37)}}{125}\normalsize = 25.1133912}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131.5(131.5-125)(131.5-101)(131.5-37)}}{37}\normalsize = 84.8425377}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 101 и 37 равна 31.0809297
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 101 и 37 равна 25.1133912
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 101 и 37 равна 84.8425377
Ссылка на результат
?n1=125&n2=101&n3=37
Найти высоту треугольника со сторонами 94, 87 и 17
Найти высоту треугольника со сторонами 121, 89 и 45
Найти высоту треугольника со сторонами 94, 83 и 24
Найти высоту треугольника со сторонами 107, 103 и 56
Найти высоту треугольника со сторонами 131, 89 и 66
Найти высоту треугольника со сторонами 97, 91 и 52
Найти высоту треугольника со сторонами 121, 89 и 45
Найти высоту треугольника со сторонами 94, 83 и 24
Найти высоту треугольника со сторонами 107, 103 и 56
Найти высоту треугольника со сторонами 131, 89 и 66
Найти высоту треугольника со сторонами 97, 91 и 52