Рассчитать высоту треугольника со сторонами 125, 103 и 94
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 103 + 94}{2}} \normalsize = 161}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161(161-125)(161-103)(161-94)}}{103}\normalsize = 92.1527622}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161(161-125)(161-103)(161-94)}}{125}\normalsize = 75.9338761}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161(161-125)(161-103)(161-94)}}{94}\normalsize = 100.975899}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 103 и 94 равна 92.1527622
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 103 и 94 равна 75.9338761
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 103 и 94 равна 100.975899
Ссылка на результат
?n1=125&n2=103&n3=94
Найти высоту треугольника со сторонами 107, 93 и 68
Найти высоту треугольника со сторонами 115, 102 и 45
Найти высоту треугольника со сторонами 124, 119 и 80
Найти высоту треугольника со сторонами 92, 72 и 28
Найти высоту треугольника со сторонами 115, 79 и 64
Найти высоту треугольника со сторонами 134, 121 и 41
Найти высоту треугольника со сторонами 115, 102 и 45
Найти высоту треугольника со сторонами 124, 119 и 80
Найти высоту треугольника со сторонами 92, 72 и 28
Найти высоту треугольника со сторонами 115, 79 и 64
Найти высоту треугольника со сторонами 134, 121 и 41