Рассчитать высоту треугольника со сторонами 125, 106 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 106 + 26}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-125)(128.5-106)(128.5-26)}}{106}\normalsize = 19.2159964}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-125)(128.5-106)(128.5-26)}}{125}\normalsize = 16.2951649}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-125)(128.5-106)(128.5-26)}}{26}\normalsize = 78.3421391}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 106 и 26 равна 19.2159964
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 106 и 26 равна 16.2951649
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 106 и 26 равна 78.3421391
Ссылка на результат
?n1=125&n2=106&n3=26
Найти высоту треугольника со сторонами 119, 119 и 73
Найти высоту треугольника со сторонами 148, 98 и 59
Найти высоту треугольника со сторонами 97, 88 и 62
Найти высоту треугольника со сторонами 107, 98 и 41
Найти высоту треугольника со сторонами 96, 76 и 62
Найти высоту треугольника со сторонами 137, 86 и 63
Найти высоту треугольника со сторонами 148, 98 и 59
Найти высоту треугольника со сторонами 97, 88 и 62
Найти высоту треугольника со сторонами 107, 98 и 41
Найти высоту треугольника со сторонами 96, 76 и 62
Найти высоту треугольника со сторонами 137, 86 и 63