Рассчитать высоту треугольника со сторонами 125, 108 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 108 + 63}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-125)(148-108)(148-63)}}{108}\normalsize = 62.9999891}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-125)(148-108)(148-63)}}{125}\normalsize = 54.4319906}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-125)(148-108)(148-63)}}{63}\normalsize = 107.999981}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 108 и 63 равна 62.9999891
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 108 и 63 равна 54.4319906
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 108 и 63 равна 107.999981
Ссылка на результат
?n1=125&n2=108&n3=63
Найти высоту треугольника со сторонами 119, 95 и 36
Найти высоту треугольника со сторонами 60, 53 и 46
Найти высоту треугольника со сторонами 121, 104 и 67
Найти высоту треугольника со сторонами 78, 50 и 46
Найти высоту треугольника со сторонами 144, 140 и 53
Найти высоту треугольника со сторонами 84, 54 и 37
Найти высоту треугольника со сторонами 60, 53 и 46
Найти высоту треугольника со сторонами 121, 104 и 67
Найти высоту треугольника со сторонами 78, 50 и 46
Найти высоту треугольника со сторонами 144, 140 и 53
Найти высоту треугольника со сторонами 84, 54 и 37