Рассчитать высоту треугольника со сторонами 125, 109 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 109 + 22}{2}} \normalsize = 128}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128(128-125)(128-109)(128-22)}}{109}\normalsize = 16.1361099}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128(128-125)(128-109)(128-22)}}{125}\normalsize = 14.0706878}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128(128-125)(128-109)(128-22)}}{22}\normalsize = 79.9470899}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 109 и 22 равна 16.1361099
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 109 и 22 равна 14.0706878
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 109 и 22 равна 79.9470899
Ссылка на результат
?n1=125&n2=109&n3=22
Найти высоту треугольника со сторонами 63, 45 и 40
Найти высоту треугольника со сторонами 88, 65 и 40
Найти высоту треугольника со сторонами 134, 125 и 100
Найти высоту треугольника со сторонами 133, 129 и 16
Найти высоту треугольника со сторонами 132, 114 и 71
Найти высоту треугольника со сторонами 144, 121 и 41
Найти высоту треугольника со сторонами 88, 65 и 40
Найти высоту треугольника со сторонами 134, 125 и 100
Найти высоту треугольника со сторонами 133, 129 и 16
Найти высоту треугольника со сторонами 132, 114 и 71
Найти высоту треугольника со сторонами 144, 121 и 41