Рассчитать высоту треугольника со сторонами 125, 110 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 110 + 31}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-125)(133-110)(133-31)}}{110}\normalsize = 28.7257997}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-125)(133-110)(133-31)}}{125}\normalsize = 25.2787038}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-125)(133-110)(133-31)}}{31}\normalsize = 101.930257}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 110 и 31 равна 28.7257997
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 110 и 31 равна 25.2787038
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 110 и 31 равна 101.930257
Ссылка на результат
?n1=125&n2=110&n3=31
Найти высоту треугольника со сторонами 127, 111 и 62
Найти высоту треугольника со сторонами 123, 106 и 61
Найти высоту треугольника со сторонами 131, 127 и 42
Найти высоту треугольника со сторонами 132, 83 и 62
Найти высоту треугольника со сторонами 100, 98 и 25
Найти высоту треугольника со сторонами 30, 19 и 18
Найти высоту треугольника со сторонами 123, 106 и 61
Найти высоту треугольника со сторонами 131, 127 и 42
Найти высоту треугольника со сторонами 132, 83 и 62
Найти высоту треугольника со сторонами 100, 98 и 25
Найти высоту треугольника со сторонами 30, 19 и 18