Рассчитать высоту треугольника со сторонами 125, 110 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 110 + 60}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-125)(147.5-110)(147.5-60)}}{110}\normalsize = 59.9990315}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-125)(147.5-110)(147.5-60)}}{125}\normalsize = 52.7991477}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-125)(147.5-110)(147.5-60)}}{60}\normalsize = 109.998224}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 110 и 60 равна 59.9990315
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 110 и 60 равна 52.7991477
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 110 и 60 равна 109.998224
Ссылка на результат
?n1=125&n2=110&n3=60
Найти высоту треугольника со сторонами 126, 94 и 93
Найти высоту треугольника со сторонами 86, 73 и 26
Найти высоту треугольника со сторонами 130, 104 и 48
Найти высоту треугольника со сторонами 119, 117 и 66
Найти высоту треугольника со сторонами 122, 103 и 101
Найти высоту треугольника со сторонами 87, 59 и 51
Найти высоту треугольника со сторонами 86, 73 и 26
Найти высоту треугольника со сторонами 130, 104 и 48
Найти высоту треугольника со сторонами 119, 117 и 66
Найти высоту треугольника со сторонами 122, 103 и 101
Найти высоту треугольника со сторонами 87, 59 и 51