Рассчитать высоту треугольника со сторонами 125, 111 и 96
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 111 + 96}{2}} \normalsize = 166}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166(166-125)(166-111)(166-96)}}{111}\normalsize = 92.2323669}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166(166-125)(166-111)(166-96)}}{125}\normalsize = 81.9023418}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166(166-125)(166-111)(166-96)}}{96}\normalsize = 106.643674}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 111 и 96 равна 92.2323669
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 111 и 96 равна 81.9023418
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 111 и 96 равна 106.643674
Ссылка на результат
?n1=125&n2=111&n3=96
Найти высоту треугольника со сторонами 137, 124 и 80
Найти высоту треугольника со сторонами 109, 98 и 13
Найти высоту треугольника со сторонами 141, 137 и 25
Найти высоту треугольника со сторонами 146, 137 и 72
Найти высоту треугольника со сторонами 133, 92 и 81
Найти высоту треугольника со сторонами 136, 105 и 52
Найти высоту треугольника со сторонами 109, 98 и 13
Найти высоту треугольника со сторонами 141, 137 и 25
Найти высоту треугольника со сторонами 146, 137 и 72
Найти высоту треугольника со сторонами 133, 92 и 81
Найти высоту треугольника со сторонами 136, 105 и 52