Рассчитать высоту треугольника со сторонами 125, 113 и 110
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 113 + 110}{2}} \normalsize = 174}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174(174-125)(174-113)(174-110)}}{113}\normalsize = 102.11255}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174(174-125)(174-113)(174-110)}}{125}\normalsize = 92.309745}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174(174-125)(174-113)(174-110)}}{110}\normalsize = 104.897438}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 113 и 110 равна 102.11255
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 113 и 110 равна 92.309745
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 113 и 110 равна 104.897438
Ссылка на результат
?n1=125&n2=113&n3=110
Найти высоту треугольника со сторонами 116, 106 и 93
Найти высоту треугольника со сторонами 122, 92 и 35
Найти высоту треугольника со сторонами 72, 66 и 54
Найти высоту треугольника со сторонами 89, 89 и 35
Найти высоту треугольника со сторонами 142, 134 и 54
Найти высоту треугольника со сторонами 98, 94 и 56
Найти высоту треугольника со сторонами 122, 92 и 35
Найти высоту треугольника со сторонами 72, 66 и 54
Найти высоту треугольника со сторонами 89, 89 и 35
Найти высоту треугольника со сторонами 142, 134 и 54
Найти высоту треугольника со сторонами 98, 94 и 56