Рассчитать высоту треугольника со сторонами 125, 113 и 63
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 113 + 63}{2}} \normalsize = 150.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150.5(150.5-125)(150.5-113)(150.5-63)}}{113}\normalsize = 62.8072174}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150.5(150.5-125)(150.5-113)(150.5-63)}}{125}\normalsize = 56.7777245}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150.5(150.5-125)(150.5-113)(150.5-63)}}{63}\normalsize = 112.654215}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 113 и 63 равна 62.8072174
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 113 и 63 равна 56.7777245
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 113 и 63 равна 112.654215
Ссылка на результат
?n1=125&n2=113&n3=63
Найти высоту треугольника со сторонами 103, 88 и 42
Найти высоту треугольника со сторонами 126, 75 и 53
Найти высоту треугольника со сторонами 124, 117 и 72
Найти высоту треугольника со сторонами 147, 133 и 50
Найти высоту треугольника со сторонами 90, 60 и 50
Найти высоту треугольника со сторонами 142, 121 и 95
Найти высоту треугольника со сторонами 126, 75 и 53
Найти высоту треугольника со сторонами 124, 117 и 72
Найти высоту треугольника со сторонами 147, 133 и 50
Найти высоту треугольника со сторонами 90, 60 и 50
Найти высоту треугольника со сторонами 142, 121 и 95