Рассчитать высоту треугольника со сторонами 125, 116 и 110
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 116 + 110}{2}} \normalsize = 175.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175.5(175.5-125)(175.5-116)(175.5-110)}}{116}\normalsize = 101.329381}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175.5(175.5-125)(175.5-116)(175.5-110)}}{125}\normalsize = 94.0336654}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175.5(175.5-125)(175.5-116)(175.5-110)}}{110}\normalsize = 106.856438}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 116 и 110 равна 101.329381
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 116 и 110 равна 94.0336654
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 116 и 110 равна 106.856438
Ссылка на результат
?n1=125&n2=116&n3=110
Найти высоту треугольника со сторонами 111, 95 и 78
Найти высоту треугольника со сторонами 149, 105 и 105
Найти высоту треугольника со сторонами 73, 69 и 60
Найти высоту треугольника со сторонами 145, 126 и 25
Найти высоту треугольника со сторонами 86, 71 и 45
Найти высоту треугольника со сторонами 146, 135 и 23
Найти высоту треугольника со сторонами 149, 105 и 105
Найти высоту треугольника со сторонами 73, 69 и 60
Найти высоту треугольника со сторонами 145, 126 и 25
Найти высоту треугольника со сторонами 86, 71 и 45
Найти высоту треугольника со сторонами 146, 135 и 23