Рассчитать высоту треугольника со сторонами 125, 116 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 116 + 40}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-125)(140.5-116)(140.5-40)}}{116}\normalsize = 39.9247395}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-125)(140.5-116)(140.5-40)}}{125}\normalsize = 37.0501582}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-125)(140.5-116)(140.5-40)}}{40}\normalsize = 115.781744}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 116 и 40 равна 39.9247395
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 116 и 40 равна 37.0501582
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 116 и 40 равна 115.781744
Ссылка на результат
?n1=125&n2=116&n3=40
Найти высоту треугольника со сторонами 39, 38 и 5
Найти высоту треугольника со сторонами 139, 114 и 85
Найти высоту треугольника со сторонами 108, 84 и 69
Найти высоту треугольника со сторонами 150, 150 и 84
Найти высоту треугольника со сторонами 129, 78 и 78
Найти высоту треугольника со сторонами 64, 60 и 24
Найти высоту треугольника со сторонами 139, 114 и 85
Найти высоту треугольника со сторонами 108, 84 и 69
Найти высоту треугольника со сторонами 150, 150 и 84
Найти высоту треугольника со сторонами 129, 78 и 78
Найти высоту треугольника со сторонами 64, 60 и 24