Рассчитать высоту треугольника со сторонами 125, 117 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 117 + 35}{2}} \normalsize = 138.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138.5(138.5-125)(138.5-117)(138.5-35)}}{117}\normalsize = 34.8678613}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138.5(138.5-125)(138.5-117)(138.5-35)}}{125}\normalsize = 32.6363182}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138.5(138.5-125)(138.5-117)(138.5-35)}}{35}\normalsize = 116.558279}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 117 и 35 равна 34.8678613
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 117 и 35 равна 32.6363182
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 117 и 35 равна 116.558279
Ссылка на результат
?n1=125&n2=117&n3=35
Найти высоту треугольника со сторонами 139, 139 и 68
Найти высоту треугольника со сторонами 136, 81 и 58
Найти высоту треугольника со сторонами 147, 127 и 121
Найти высоту треугольника со сторонами 120, 110 и 88
Найти высоту треугольника со сторонами 116, 86 и 71
Найти высоту треугольника со сторонами 40, 38 и 34
Найти высоту треугольника со сторонами 136, 81 и 58
Найти высоту треугольника со сторонами 147, 127 и 121
Найти высоту треугольника со сторонами 120, 110 и 88
Найти высоту треугольника со сторонами 116, 86 и 71
Найти высоту треугольника со сторонами 40, 38 и 34