Рассчитать высоту треугольника со сторонами 125, 118 и 101
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 118 + 101}{2}} \normalsize = 172}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172(172-125)(172-118)(172-101)}}{118}\normalsize = 94.3598398}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172(172-125)(172-118)(172-101)}}{125}\normalsize = 89.0756888}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172(172-125)(172-118)(172-101)}}{101}\normalsize = 110.242189}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 118 и 101 равна 94.3598398
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 118 и 101 равна 89.0756888
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 118 и 101 равна 110.242189
Ссылка на результат
?n1=125&n2=118&n3=101
Найти высоту треугольника со сторонами 144, 136 и 134
Найти высоту треугольника со сторонами 140, 109 и 67
Найти высоту треугольника со сторонами 136, 131 и 13
Найти высоту треугольника со сторонами 104, 89 и 66
Найти высоту треугольника со сторонами 114, 101 и 18
Найти высоту треугольника со сторонами 140, 129 и 126
Найти высоту треугольника со сторонами 140, 109 и 67
Найти высоту треугольника со сторонами 136, 131 и 13
Найти высоту треугольника со сторонами 104, 89 и 66
Найти высоту треугольника со сторонами 114, 101 и 18
Найти высоту треугольника со сторонами 140, 129 и 126