Рассчитать высоту треугольника со сторонами 125, 118 и 107
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 118 + 107}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-125)(175-118)(175-107)}}{118}\normalsize = 98.7060787}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-125)(175-118)(175-107)}}{125}\normalsize = 93.1785383}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-125)(175-118)(175-107)}}{107}\normalsize = 108.853433}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 118 и 107 равна 98.7060787
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 118 и 107 равна 93.1785383
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 118 и 107 равна 108.853433
Ссылка на результат
?n1=125&n2=118&n3=107
Найти высоту треугольника со сторонами 145, 132 и 30
Найти высоту треугольника со сторонами 90, 77 и 18
Найти высоту треугольника со сторонами 125, 98 и 28
Найти высоту треугольника со сторонами 67, 67 и 11
Найти высоту треугольника со сторонами 68, 59 и 51
Найти высоту треугольника со сторонами 145, 115 и 89
Найти высоту треугольника со сторонами 90, 77 и 18
Найти высоту треугольника со сторонами 125, 98 и 28
Найти высоту треугольника со сторонами 67, 67 и 11
Найти высоту треугольника со сторонами 68, 59 и 51
Найти высоту треугольника со сторонами 145, 115 и 89