Рассчитать высоту треугольника со сторонами 125, 118 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 118 + 23}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-125)(133-118)(133-23)}}{118}\normalsize = 22.4574672}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-125)(133-118)(133-23)}}{125}\normalsize = 21.1998491}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-125)(133-118)(133-23)}}{23}\normalsize = 115.216571}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 118 и 23 равна 22.4574672
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 118 и 23 равна 21.1998491
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 118 и 23 равна 115.216571
Ссылка на результат
?n1=125&n2=118&n3=23
Найти высоту треугольника со сторонами 38, 25 и 19
Найти высоту треугольника со сторонами 130, 84 и 79
Найти высоту треугольника со сторонами 97, 73 и 54
Найти высоту треугольника со сторонами 119, 87 и 57
Найти высоту треугольника со сторонами 120, 86 и 46
Найти высоту треугольника со сторонами 81, 67 и 32
Найти высоту треугольника со сторонами 130, 84 и 79
Найти высоту треугольника со сторонами 97, 73 и 54
Найти высоту треугольника со сторонами 119, 87 и 57
Найти высоту треугольника со сторонами 120, 86 и 46
Найти высоту треугольника со сторонами 81, 67 и 32