Рассчитать высоту треугольника со сторонами 125, 120 и 94
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 120 + 94}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-125)(169.5-120)(169.5-94)}}{120}\normalsize = 88.4890804}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-125)(169.5-120)(169.5-94)}}{125}\normalsize = 84.9495171}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-125)(169.5-120)(169.5-94)}}{94}\normalsize = 112.964783}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 120 и 94 равна 88.4890804
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 120 и 94 равна 84.9495171
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 120 и 94 равна 112.964783
Ссылка на результат
?n1=125&n2=120&n3=94
Найти высоту треугольника со сторонами 78, 64 и 43
Найти высоту треугольника со сторонами 56, 56 и 41
Найти высоту треугольника со сторонами 126, 77 и 70
Найти высоту треугольника со сторонами 77, 47 и 46
Найти высоту треугольника со сторонами 119, 104 и 36
Найти высоту треугольника со сторонами 131, 94 и 76
Найти высоту треугольника со сторонами 56, 56 и 41
Найти высоту треугольника со сторонами 126, 77 и 70
Найти высоту треугольника со сторонами 77, 47 и 46
Найти высоту треугольника со сторонами 119, 104 и 36
Найти высоту треугольника со сторонами 131, 94 и 76