Рассчитать высоту треугольника со сторонами 125, 121 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 121 + 40}{2}} \normalsize = 143}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143(143-125)(143-121)(143-40)}}{121}\normalsize = 39.9189261}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143(143-125)(143-121)(143-40)}}{125}\normalsize = 38.6415205}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143(143-125)(143-121)(143-40)}}{40}\normalsize = 120.754751}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 121 и 40 равна 39.9189261
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 121 и 40 равна 38.6415205
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 121 и 40 равна 120.754751
Ссылка на результат
?n1=125&n2=121&n3=40
Найти высоту треугольника со сторонами 111, 105 и 93
Найти высоту треугольника со сторонами 64, 60 и 8
Найти высоту треугольника со сторонами 106, 91 и 41
Найти высоту треугольника со сторонами 112, 91 и 48
Найти высоту треугольника со сторонами 86, 82 и 12
Найти высоту треугольника со сторонами 118, 93 и 71
Найти высоту треугольника со сторонами 64, 60 и 8
Найти высоту треугольника со сторонами 106, 91 и 41
Найти высоту треугольника со сторонами 112, 91 и 48
Найти высоту треугольника со сторонами 86, 82 и 12
Найти высоту треугольника со сторонами 118, 93 и 71