Рассчитать высоту треугольника со сторонами 125, 123 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 123 + 69}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-125)(158.5-123)(158.5-69)}}{123}\normalsize = 66.7863356}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-125)(158.5-123)(158.5-69)}}{125}\normalsize = 65.7177542}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-125)(158.5-123)(158.5-69)}}{69}\normalsize = 119.053903}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 123 и 69 равна 66.7863356
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 123 и 69 равна 65.7177542
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 123 и 69 равна 119.053903
Ссылка на результат
?n1=125&n2=123&n3=69
Найти высоту треугольника со сторонами 125, 102 и 61
Найти высоту треугольника со сторонами 126, 117 и 47
Найти высоту треугольника со сторонами 97, 83 и 62
Найти высоту треугольника со сторонами 122, 113 и 34
Найти высоту треугольника со сторонами 123, 112 и 63
Найти высоту треугольника со сторонами 54, 54 и 25
Найти высоту треугольника со сторонами 126, 117 и 47
Найти высоту треугольника со сторонами 97, 83 и 62
Найти высоту треугольника со сторонами 122, 113 и 34
Найти высоту треугольника со сторонами 123, 112 и 63
Найти высоту треугольника со сторонами 54, 54 и 25