Рассчитать высоту треугольника со сторонами 125, 124 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 124 + 50}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-125)(149.5-124)(149.5-50)}}{124}\normalsize = 49.1692495}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-125)(149.5-124)(149.5-50)}}{125}\normalsize = 48.7758955}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-125)(149.5-124)(149.5-50)}}{50}\normalsize = 121.939739}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 124 и 50 равна 49.1692495
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 124 и 50 равна 48.7758955
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 124 и 50 равна 121.939739
Ссылка на результат
?n1=125&n2=124&n3=50
Найти высоту треугольника со сторонами 75, 74 и 25
Найти высоту треугольника со сторонами 148, 125 и 114
Найти высоту треугольника со сторонами 132, 108 и 78
Найти высоту треугольника со сторонами 133, 132 и 17
Найти высоту треугольника со сторонами 126, 117 и 62
Найти высоту треугольника со сторонами 108, 80 и 68
Найти высоту треугольника со сторонами 148, 125 и 114
Найти высоту треугольника со сторонами 132, 108 и 78
Найти высоту треугольника со сторонами 133, 132 и 17
Найти высоту треугольника со сторонами 126, 117 и 62
Найти высоту треугольника со сторонами 108, 80 и 68