Рассчитать высоту треугольника со сторонами 125, 83 и 60
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 83 + 60}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-125)(134-83)(134-60)}}{83}\normalsize = 51.4075025}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-125)(134-83)(134-60)}}{125}\normalsize = 34.1345816}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-125)(134-83)(134-60)}}{60}\normalsize = 71.1137118}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 83 и 60 равна 51.4075025
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 83 и 60 равна 34.1345816
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 83 и 60 равна 71.1137118
Ссылка на результат
?n1=125&n2=83&n3=60
Найти высоту треугольника со сторонами 85, 82 и 65
Найти высоту треугольника со сторонами 133, 107 и 97
Найти высоту треугольника со сторонами 131, 113 и 111
Найти высоту треугольника со сторонами 88, 85 и 50
Найти высоту треугольника со сторонами 150, 106 и 82
Найти высоту треугольника со сторонами 117, 97 и 33
Найти высоту треугольника со сторонами 133, 107 и 97
Найти высоту треугольника со сторонами 131, 113 и 111
Найти высоту треугольника со сторонами 88, 85 и 50
Найти высоту треугольника со сторонами 150, 106 и 82
Найти высоту треугольника со сторонами 117, 97 и 33