Рассчитать высоту треугольника со сторонами 125, 85 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 85 + 79}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-125)(144.5-85)(144.5-79)}}{85}\normalsize = 77.9724952}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-125)(144.5-85)(144.5-79)}}{125}\normalsize = 53.0212967}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-125)(144.5-85)(144.5-79)}}{79}\normalsize = 83.8944568}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 85 и 79 равна 77.9724952
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 85 и 79 равна 53.0212967
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 85 и 79 равна 83.8944568
Ссылка на результат
?n1=125&n2=85&n3=79
Найти высоту треугольника со сторонами 142, 133 и 18
Найти высоту треугольника со сторонами 64, 57 и 45
Найти высоту треугольника со сторонами 127, 98 и 41
Найти высоту треугольника со сторонами 71, 60 и 13
Найти высоту треугольника со сторонами 129, 96 и 46
Найти высоту треугольника со сторонами 107, 63 и 51
Найти высоту треугольника со сторонами 64, 57 и 45
Найти высоту треугольника со сторонами 127, 98 и 41
Найти высоту треугольника со сторонами 71, 60 и 13
Найти высоту треугольника со сторонами 129, 96 и 46
Найти высоту треугольника со сторонами 107, 63 и 51