Рассчитать высоту треугольника со сторонами 125, 86 и 80

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 86 + 80}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-125)(145.5-86)(145.5-80)}}{86}\normalsize = 79.2901254}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-125)(145.5-86)(145.5-80)}}{125}\normalsize = 54.5516062}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-125)(145.5-86)(145.5-80)}}{80}\normalsize = 85.2368848}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 86 и 80 равна 79.2901254
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 86 и 80 равна 54.5516062
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 86 и 80 равна 85.2368848
Ссылка на результат
?n1=125&n2=86&n3=80