Рассчитать высоту треугольника со сторонами 125, 94 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{125 + 94 + 39}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-125)(129-94)(129-39)}}{94}\normalsize = 27.1257822}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-125)(129-94)(129-39)}}{125}\normalsize = 20.3985882}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-125)(129-94)(129-39)}}{39}\normalsize = 65.3800903}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 125, 94 и 39 равна 27.1257822
Высота треугольника опущенная с вершины A на сторону BC со сторонами 125, 94 и 39 равна 20.3985882
Высота треугольника опущенная с вершины C на сторону AB со сторонами 125, 94 и 39 равна 65.3800903
Ссылка на результат
?n1=125&n2=94&n3=39
Найти высоту треугольника со сторонами 116, 90 и 75
Найти высоту треугольника со сторонами 99, 72 и 37
Найти высоту треугольника со сторонами 128, 116 и 53
Найти высоту треугольника со сторонами 119, 107 и 103
Найти высоту треугольника со сторонами 99, 74 и 46
Найти высоту треугольника со сторонами 118, 85 и 83
Найти высоту треугольника со сторонами 99, 72 и 37
Найти высоту треугольника со сторонами 128, 116 и 53
Найти высоту треугольника со сторонами 119, 107 и 103
Найти высоту треугольника со сторонами 99, 74 и 46
Найти высоту треугольника со сторонами 118, 85 и 83